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An extended law of the wall is derived for three-dimensional flows. It describes 
the variation of the magnitude and direction of velocity close to the wall. The 
effects of both the pressure gradient and the inertial forces have been taken into 
account. The derived wall law is valid only when the deviations from the simple 
law of the wall are not large. The most important feature of a three-dimensional 
wall law is the prediction of the rotation of the velocity vector near the wall. 
Comparison of the flow angle variations predicted by the present wall law with 
the few available experimental data shows good agreement. 

1. Introduction 
The law of the wall describes the velocity distribution in turbulent shear flows 

near walls. Some information about the velocity distribution in this region can 
be simply obtained from dimensional analysis. If it is assumed that flow close to 
a smooth wall is determined completely by local conditions (wall shear stress, 
distance from the wall and fluid properties), a universal velocity distribution 
must exist near walls. I n  turbulent flows the viscous forces are important only 
in a very thin layer adjacent to the wall: the so-called viscous sublayer. In  the 
region where the direct effect of the fluid viscosity is negligible (i.e. outside the 
viscous sublayer), dimensional reasoning (see e.g. Rotta 1962) leads to the conclu- 
sion that the velocity must vary logarithmically with distance from the wall. 
This law of the wall, which predicts a logarithmic velocity distribution outside 
the viscous sublayer, has been known for a long time and has been confirmed 
experimentally numerous times. Here it will be called the simple law of the wall. 

An assumption in the derivation of the simple law of the wall is that the shear 
stress is constant and equal to the wall shear stress in the thin layer near the wall, 
where the law of the wall is supposed to  hold. The simple law of the wall leads 
fundamentally to a two-dimensional velocity distribution in the plane of the wall 
shear stress. However, in three-dimensional boundary layers, it has been found 
that significant changes in flow direction may occur close to the wall (e.g. East & 
Pierce 1972). Changes in direction of the velocity can be predicted only by 
extended versions of the law of the wall, which take into account the variation of 
the shear stress vector with distance from the wall. This paper deals with such 
extensions of the simple law of the wall. 

For two-dimensional flows, an extended law of the wall was deduced by 
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Townsend (1961) for a linearly varying shear stress r = rw + const. x y, where y is 
the distance from the wall. A linearly varying shear stress is found from the 
equation of motion, when taking into account only the effect of the pressure 
gradient in the flow direction and neglecting the inertial terms. When the shear 
stress is not constant, it is not possible to derive a velocity distribution from 
dimensional reasoning. A relation has to be assumed between the magnitude of 
the shear stress and the velocity variation. It is generally assumed that, outside 
the viscous sublayer, the mixing-length relation holds, 

where I is the so-called mixing length, p is the fluid density and U is the fluid 
velocity. When 1 cc y and r = r,, a logarithmic velocity distribution results, in 
accordance with the simple law of the wall. The essential assumption that will 
be made is that the magnitude of the mixing length remains the same when the 
shear stress is not constant. On the basis of this assumption, an expression for the 
velocity distribution can be obtained, as shown by Towiisend (1961). Recently, 
generalizations have been given of the above procedure to three-dimensional 
flows, with shear stress varying linearly in magnitude and direction (Perry & 
?Joubert 1965; Nash & Patel 1972; van den Berg 1972). 

The usefulness of the extended wall laws described above appears to be 
limited. The reason is that only the effect of the pressure gradient on the shear 
stress variation with distance from the wall has been taken into account. In fact, 
the influence of the inertial forces on the shear stress variation appears to  be far 
from negligible. The importance of the inertial effects is not surprising. when 
considering the extremely rapid increase of the velocity with distance from the 
mall in turbulent flows. I n  two-dimensional flows, the contribution of the inertial 
terms in the equation of motion was found to  be typically about half the pressure 
gradient term in the region of interest ( ie.  outside the viscous sublayer). To 
obtain more useful extended laws of the wall, i t  is essential, therefore, to take into 
account the inertial effects. 

These may be estimated by substituting the velocity distribution given by the 
simple law of the wall into the inertial terms of the equations of motion. This is 
justified only when the shear stress change with distance from the wall is not 
large. In  fact, the first-order approximation to the inertial terms for small devia- 
tions from the simple law of the wall is obtained in this way. In  it, the inertial 
terms depend solely on the variation of wall shear stress along the surface, 
actually on the first derivatives of rw. If a higher-order approximation to the 
inertial terms is required, the second derivatives of the pressure, and also of r,, 
play a role, and the estimation of the inertial forces then becomes inucli more 
complicated. 

As mentioned already, several attempts have been made to obtain formulae 
for the velocity distribution near the wall more accurate than that given by the 
simple law of the wall. The important inertial effects have never been taken into 
account in a really satisfactory manner, however, particularly for the three- 
dimensional case. Therefore i t  was decided to deduce a three-dimensional 
wall law along the lines just described. In  view of the extensive use made of the 



A law of the wall for turbulent shearJEows 151 

law of the wall formula for various purposes, a three-dimensional extension of 
it may be supposed to have some general interest. But the immediate motive 
for the work was the application of the formula in a calculation method for three- 
dimensional turbulent boundary layers (van den Berg et al. 1975). It appeared 
essential for the construction of a satisfactory calculation method to use a good 
extended law of the wall. This is not very surprising, since the development of 
turbulent boundary layers is determined to a large extent in the law of the wall 
region. 

In  the present derivation of the wall law the first-order approximation will be 
taken consistently. This means that, not only the inertial effects, but also the 
effect of the pressure gradient will be considered only to the accuracy required 
for small shear-stress variations. This leads to a substantial simplification of the 
resulting formula, without a real loss of accuracy. 

2. The mixing-length relation 
As mentioned earlier, it is necessary, for the derivation of extended wall laws, 

to make a physical assumption about turbulent shear stress. The calculations in 
this paper will be based on the assumption that the mixing-length relation given 
below holds. In  three-dimensional flows the mixing-length relation may be 
written, with mixing length 1 = Icy where k is the von K&rmin constant, as 

Here rZ, rG7 U, and V, are the components of the shear stress T and the velocity U 
in x and x directions. The relation is written in such a way that the shear stress 
acts in the direction of the maximum rate of deformation, as in laminar flows. 
The relation is supposed to be valid close to the wall, but outside the viscous 
sublayer. 

The mixing-length relation was first put forward by Prandtl nearly fifty years 
ago; since then it may be considered the common assumption about turbulent 
shear stress in the wall region. Townsend’s (1961) two-dimensional extended law 
of the wall is based on it. According to Townsend, the mixing-length relation 
represents the equilibrium between production and dissipation of turbulent 
energy in the region close to the wall. Townsend originally included a diffusion 
term in the energy balance; but this received little support from later measure- 
ments. There is much experimental evidence that the mixing-length relation 
remains valid in a wide variety of circumstances. In  the present context it is 
important to mention Huffman & Bradshaw (1972)) who analysed a large number 
of measurements in turbulent flows near walls with a shear stress variation with 
distance from the wall. This analysis demonstrated that the mixing length 
remains unaltered up to substantial shear stress variations. Also, in compressible 
flows there is no evidence that the mixing length changes much with increasing 
Mach number (e.g. Maise &McDonald 1968). On the whole, the available evidence 
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suggests that the mixing-length relation holds much better than one might expect 
(Pate1 1973). 

I n  the foregoing, attention was focused on the validity of the mixing-length 
relation in two-dimensional flows. The main additional assumption in three- 
dimensional flows is that the shear stress direction coincides with the direction 
of the maximum rate of deformation, i.e. 

TX/TZ = (au,laY)l(au,laY). 
Such a shear stress direction follows if it is assumed that the produced turbulent 
shear stress (which most probably has the direction of the deformation) can be 
equated to the dissipated shear stress (which may be expected to occur in the 
shear stress direction). The assumption is in harmony with the idea of the exist- 
ence of an equilibrium between turbulence production and dissipation close to 
the wall. Since experimental data are scarce in three-dimensional t,urbulent 
flows, no direct experimental evidence can be given to support this assumption. 
East (1972) suggested that the effect of diffusion of turbulence should be included 
close to the wall. By introducing a considerable diffusion rate (an order of magni- 
tude larger than assumed earlier by Townsend in two-dimensional flows near 
walls), he obtained an essential difference between the shear stress direction and 
the direction of the velocity gradient, in contrast with the assumption made here. 
But the amount of diffusion is physically unlikely in the author’s opinion. The 
idea was suggested to East by existing experimental evidence that substantial 
differences may exist between the direction of the shear stress and the velocity 
gradient. Such differences have indeed been found in three-dimensional turbulent 
boundary layers, but not in the thin region close to the wall, where the law of the 
wall is supposed to hold. An accurate determination of shear stress in this region 
will be extremely difficult. Although not much certainty exists about the shear 
stress direction, it seems most sensible to assume for the present that the shear 
stress acts in the direction of the velocity gradient close to the wall. 

3. The derivation of the law of the wall 
The equations of motion for thin shear layers read 

The left-hand sides of the equations are O(y2) close to a wall, if y is the distance 
from the wall. For small y, therefore, the shear stress gradient and pressure 
gradient may be equated, so that the shear stress distribution close to a wall may 

aP aP 
7x = 7wz+-yy, TZ = rw,+-y. ax ax 

be written as 

The validity of the above equations is restricted to an extremely thin layer 
adjacent to the wall, usually even thinner than the viscous sublayer. To extend 
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the validity to regions of more practical interest, it is necessary to include the 
left-hand sides of equations (3) and (4) (i.e. to estimate the contribution of the 
inertial terms). As a first approximation, it may be assumed, for the purpose of 
such an estimate, that the velocity is determined completely by the wall distance 
and the local wall shear stress vector. Consequently, the contribution of the 
inertial terms can be deduced from the local wall shear stress gradients, which 
are supposed to be known. The foregoing means that the simple law of the wall 
will be used here to correct the simple law of the wall for the shear stress varia- 
tions due to the inertial effects. This may be done only when the shear stress 
variation with distance from the wall is small, i.e. when 

1T2-Tw21 < 7 ,  and 1T2-Twzl < Tw. 

It is useful to define a skin-friction velocity vector in the direction of the wall 
shear stress with a magnitude u, = (r,/p)* and components uT2 and uT2. Writing 
y+ = yu,/v, where v is the kinematic viscosity, the simple law of the wall may be 
expressed as 

The velocity U, normal to the wall can be found by integration of the continuity 
equation: 

ux = U,f(Y+), u, = u,f(y+). (717 (8) 

The contribution of the inertial terms is now obtained by substitution of 
(7)-(9) in the left-hand sides of (3) and (4). With some algebra, a complicated 
expression is derived for the inertial terms. This expression becomes much 
simpler when one of the co-ordinate axes coincides with the direction of the wall 
shear stress. Henceforth the x axis will be taken in the wall shear stress direction 
a t  the position considered. The shear stress distribution, with the inertial effects 
taken into account, then becomes 

When investigating the numerical magnitude of the integrals in (10) and (1 I), it 
appears that the integral expression of the last term in (10) is very small for all 
practical values of y+ (see van den Berg 1972). It is justifiable, therefore, to omit 
this term, for reasons of simplicity. To evaluate the integrals, the well-known 
log law f(y+) = k-l(lny++A) may be substituted. This gives (taking A = 2, 
which is very near the usually assumed value) 

Y+ f2dy+ = k-2(Iny++1)2y++-+cc. k2 

The constant c has been added to account for the error made by using the log 
law also in the viscous sublayer. The above formula was compared with a 
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numerical integration of $2, using the tabulated function of Coles (1955). The 
tabulated function f describes the correct velocity distribution in the viscous 
sublayer with a smooth transition to  the log law. It appears (van den Berg 1972) 
that the contribution of c ,  and also of y+lk2, may be neglected for y+ > 30 (i.e. 
outside the viscous sublayer). Consequently, the integral can be approximated by 

f2dy+ = P ( l n  y+ + yf. so”+ 
For convenience, the parameters 

v aP 
pu:ax pu; a2 

a =-- a~ and as=--, 

are introduced, where q57 is the wall shear stress angle. It may be helpful t.0 recall 
that a11 quantities are defined in a Cartesian co-ordinate system with the x axis 
in the direction of the wall shear stress. Equations (10) and (11) can now be 
written as 

7s (In yf + i)2y+ 
- 7, = asy++p* k2 

From the found shear stress distribution, the velocity distribution has to be 
deduced. For that purpose, the mixing-length relation, given by (1) and ( 2 ) ,  will 
be applied. When one takes 

rZ - 7, < T,, and rZ Q rW, 

an assumption made earlier, (1) and (2) may be rewritten: 

Substitution of the shear stress distribution given by (15) and (16) leads to  a 
three-dimensional extended law of the wall. Integration, after expanding in 
power series for small a,.-’-, etc., and retaining the leading terms, results in the 
simple formulae 

where (In + 1 is approximated by (In ZJ+)~. Here U: = Ux/u7 is the dimension- 
less velocity in the wall shear stress direction, and U$ = Us/u, that in the crosswise 
direction. The const’ants A and b are inbegration constants, which appear because 
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the mixing-length relation does not hold up to the wall. Very close to the wall, the 
turbulent shear stresses are suppressed, and the viscous shear stresses become 
important. The velocity increment in the viscous sublayer and the change in 
direction are accounted for by the constants A and b. Some remarks on these 
constants will be made shortly. 

Instead of the velocity components U, and U,, the magnitude and direction of 
the velocity may be given. Within the approximation considered here (small 
a,y+, etc.), the absolute value of the velocity is equal to U,. The flow angle q5, 
relative to the wall shear stress angle, may be written as 

(21) 
%(Y+ + 6 )  +Pz(lnY+)2Y+/~2 

$ =  lny++A 

For a, = /3, = 0, (19) reduces to  the well-known log law. Equation (19) with 
P, = 0 may be compared with Townsend's two-dimensional extended law of the 
wall, which neglects inertial effects: 

1 
( 2 2 )  u,+ = [In y+ + A  - 2 In &{( 1 +a, y+)B + I} + 2( 1 +a, y+)+ - 21. 

It is easy to show that (22) reduces to (19) withp, = Ofor axy+ 1, which has to 
be the case. In  figure 1, the velocity distributions according to both formulae are 
compared for a typical value of a,. The logarithmic velocity distribution of the 
simple law of the wall has also been plotted. It is evident that the agreement 
between (19) and (22) remains good up to surprisingly large values of a,y+. Even 
for a,y+ = 1, which means that the shear stress is doubled in the region con- 
sidered, the discrepancy is still negligible, while the difference between the 
velocities given by the extended wall laws and the simple wall law is substantial. 
The error due to the assumption that shear stress variation with distance from 
the wall is small is rather less than one might have expected. 

Townsend assumed the value of A to be independent of the pressure gradient 
parameter a,, so that the constant A in his formula may be equated to the 
constant A in the simple law of the wall, which is known from experiment. An 
attempt will be made here t o  evaluate the effect of a pressure gradient on A, by 
assuming purely laminar flow near the wall, with an abrupt transition to turbu- 
lent flow a t  a certain value of (y/v) ( ~ / p ) + .  I n  laminar flow with a pressure gradient, 
the velocity in the wall shear stress direction and perpendicular to it may be 
written as 

u,+ = y+( 1 + +a,y+), U,+ = +aB(y+)z. (23)) (24) 

For a., = 0, agreement must exist with the simple law of the wall, in which case 
A 2 .  It appears that, to obtain A = 2 ,  one should pass from the laminar to the 
turbulent equations a t  (y/v) (7/p)9 "N 11. If (23) is fitted to (19) a t  (y/v) (7/p)4 = 1 1 ,  
it is found that A is independent of a,, when O(a2) or higher-order terms are 
neglected. So, as a first approximation, A may be taken equal to the value in the 
simple law of the wall as in Townsend's analysis. The same result was obtained by 
Mellor (1966)' who established the effect of a pressure gradient on A in a more 
detailed fashion, assuming a gradual instead of abrupt transition from the fluid 
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FIGURE 1. Comparison of velocity variations, close to the wall in two-dimensional 
flow, predicted by various versions of the law of the wall. a, = Extended laws of the 
wall (upper curves): ---, (19) withp, = 0, viz. U: = k-l(lny+A + &,y+); -, Townsend 
(see (22)).  Simple law of the wall (lower curve): u: = k-l(lny++A). 

viscosity to an eddy viscosity function that corresponded to  the mixing-lengttli 
concept outside the viscous sublayer. If (24) is fitted to  (20) a t  (y/v) (T/ /J) :  = 11, 
one obtains b x 13, neglecting again O(a2) or higher-order terms. Further details 
about the determination of the constants A and b are given in van den Berg 
(1972). The influence of the inertial forces (i.e. of /3z and p,) on the constants has 
been neglected, because inertial effects are most important further away from 
the wall, and should therefore not affect these constants very much. 

4. The effect of compressibility 
The influence of the compressibility of the fluid will be taken into account here 

only to the first-order approximation for small density variations. In  that case, 
the compressibility effect may be superposed on the effect of the shear stress 
variations with distance from the wall, which was established to the first-order 
approximation in $ 3 .  So it suffices to consider the influence of compressibility in 
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a constant shear stress layer. Furthermore, the discussion will be limited to flows 
with zero heat transfer to or from the wall. 

Near adiabatic walls the distribution of the absolute temperature T satisfies 
auite well the Crocco relation 

where r is the recovery factor ( r  M 0.9), and C, is the specific heat at constant 
pressure. The density variation aeross the shear layer follows from p,T, = pT.  
An appropriate compressibility parameter near walls is the skin-friction Mach 
number M, = u7/uw, where u, = (7JpW)* and a, is the speed of sound at  the wall. 
Equation (25 )  can now be written as 

(26) 
where y is the ratio of specific heats. It will again be assumed that the mixing- 
length relation holds. When 7 = 7,, the relation becomes, in compressible flows, 

pw/p = 1 - *r(y - 1) iM;( U+)2, 

Substitution of (26) into (27) and integration gives, with the assumption that 
density variation is small, 

This equation is in agreement with the compressible wall laws for the case of 
adiabatic walls, given by Van Driest (1951) and Rotta (1960), at  least for MT < 1. 
It appears that agreement remains good up to M, NN 0.15. Much larger values of 
H, will seldom occur in non-hypersonic shear layers. Moreover, if M, is not small, 
the temperature variations in the wall law region will be so large that it becomes 
very questionable whether the mixing-length relation is still valid. At M, = 0.05 
and yf = 100, (28) gives a 2 yo decrease in velocity, as compared with the velocity 
in incompressible flow. So it appears that the influence of compressibility on the 
velocity distribution is rather small; and, a t  moderate Mach numbers (sap 
M, < 0.05, which holds in practically all subsonic flows), the incompressible law 
of the wall, substituting the fluid properties at  the wall, will give very reasonable 
results. 

To apply a correction for compressibility effects to the general three-dimen- 
sional law of the wall given in $3,  the last term of (28) has to be added t o  (19), 
which describes the variation of the velocity in wall shear stress direction. No 
compressibility effect on the direction of the velocity occurs within the accuracy 
considered here. 

5. Comparison with experimental results 
A comparison of the velocity distribution predicted by a law of the wall with 

measurements is hampered by the fact that the law of the wall is valid only in 
a very thin region adjacent to  the wall. In  shear layers of laboratory scale, the 
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F I G V ~ E  2. Coniparison of measured with predicted variation of flow angle $ close t o  
the wall. Station 5 of van den Berg’s & Elsenaar’s (1972) experiment; a, = 5.04 x 10-3; 
/32 z - 13.1 x 0, measurement. Prediction: ---, no inertial terms; -, with inertial 
trrms, (21).  

use of a measuring device of very small dimensions, such as a hot wire, is required 
to determine the velocity with acceptable accuracy. Another problem is the 
accurate measurement of the magnitude and direction of the wall shear stress, 
which are essential data. Moreover, interest is focused here on the relatively small 
deviations from the simple law of the wall that are predicted by extended wall 
laws. Consequently, comparisons with experiment are often inconclusive. The 
most significant deviation from the simple law of the wall i s  the predicted rotation 
of the velocity vector by the three-dimensional law of the wall derived in 3 3. 
A flow angle variation of the order of 5” may well occur in the law of the wall 
region, and this should be measurable. It seems sensible, therefore, to restrict 
comparisons with experiment to the variation of the velocity direction close to 
the wall. 

Van den Berg & Elsenaar (1972) have carried out velocity measurements with 
hot wires up to very close to the surface in an incompressible three-dimensional 
turbulent boundary layer. (See also van den Berg et aZ. 1975.) The wall shear stress 
direction was determined by them with Stanton-type wall Pitots. This was done 
by rotating the wall Pitots, then establishing the symmetry line of the data. I n  
fact, of course, a sort of mean flow direction over the wall Pitot height is found in 
this way. Since the flow angle variation is large close to the wall, a substantial 
systematic error may thus be made. Therefore, recently an attempt has been 
made to determine in the same test set-up the wall shear stress angle from oil flow 
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FIGURE 3. Comparison of measured with predicted variation of flow angle y5 close to 
the wall. Station 7 of van den Berg's & Elsenaar's (1972) experiment; a, = 4.95 x 
p, = - 7.0 x 10-6. Symbol key as for figure 2. 

patterns. Onemay expect these to be createdby the wall shear stresses themselves; 
so they should give a better indication of their direction. At low speeds, as in the 
present experiment, oil flow patterns are often too irregular to determine wall 
shear stress angles with reasonable accuracy. But a special oil mixture was used 
here, with very fine grains, which resulted in tiny but clear traces of the wall 
streamlines. (This mixture was kindly made available by the Department of 
Aeronautical Engineering, Delft University of Technology.) The wall shear stress 
angles, obtained from the oil flow patterns, appeared to be reproducible within 

0.5" (see van den Berg 1972). At the measuring stations considered, the angles 
appear to exceed the wall shear stress angles, foundearlierwith the wall Pitots, by 
about 2". This difference is actually about the estimated error of the wall Pitot 
measurements. It is believed that the new shear stress angles are the most reliable, 
and the comparisons that will be made with the theory are based on them. 

In figures 2 and 3, the measured flow angle variation with distance from the 
wall is compared with the variation according to (21). The two measuring 
stations, a t  which the comparisons are made, were chosen because they are 
situated in the region with the largest flow angle variations near the wall in this 
test set-up. In  both cases, agreement between theory and experiment is seen to 
be very reasonable, considering the accuracy of the establishment of the wall 
shear stress direction. At high values of yf, deviations may become apparent, 
since (.2i.) does not hold for large changes in shear stress, which occur when a, yf 
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becomes large. In  both figures, a curve is included which gives the flow angle 
variation that would have been predicted neglecting the inertial effects (i.e. if 
/3, = 0 in (21)). It is evident that the contribution of the inertial terms is far from 
negligible. 

6. Conclusions 
It is possible to derive a three-dimensional law of the wall, valid to the first- 

order approximation for small deviations from the simple two-dimensional law 
of the wall. This law of the wall takes full account of inertial effects, which are not 
negligible at  all compared with the effect of a pressure gradient in the region of 
interest. The most significant feature of this three-dimensional law of the wall is 
the prediction of the rotation of the velocity vector close to  the wall. Conlparisons 
of the predicted flow angle variation with the few experimental data available 
show good agreement. 
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